Riesz potential operators and inverses via fractional centred derivatives
نویسنده
چکیده
Fractional centred differences and derivatives definitions are proposed generalising to real orders the existing ones valid for even and odd positive integer orders. For each one, suitable integral formulations are obtained. The computations of the involved integrals lead to new generalisations of the Cauchy integral derivative. To compute this integral, a special two straight line path was used. With this the referred integrals lead to the well known Riesz potential operators and their inverses that emerge as true fractional centred derivatives, but that can be computed through summations similar to the well known Grünwald-Letnikov derivatives Mathematics Subject Classification: 26A33
منابع مشابه
l-valued extension of the fractional maximal operators for non-doubling measures via potential operators
In this paper we consider fractional maximal operators with Radon measure on R. We do not pose any assumption on the measure μ except that the measure is non-zero. For the proof we construct Riesz-like potential operators for μ.
متن کاملRegularized fractional derivatives in Colombeau algebra
The present study aims at indicating the existence and uniqueness result of system in extended colombeau algebra. The Caputo fractional derivative is used for solving the system of ODEs. In addition, Riesz fractional derivative of Colombeau generalized algebra is considered. The purpose of introducing Riesz fractional derivative is regularizing it in Colombeau sense. We also give a solution to...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملq-ANALOGUES OF SAIGO’S FRACTIONAL CALCULUS OPERATORS
M. Saigo [Math. Rep. Coll. Gen. Educ., Kyushu Univ., 11 (1978) 135-143] has defined a pair of fractional integral operators and fractional derivatives involving generalizd hypergeometric function. The aim of present paper is to define their q-analogues. First, we define a pair of q-analogues of Saigo’s fractional integral operators and establish some results for it. Next, we define a pair of q-...
متن کاملAtomic Decomposition of Function Spaces and Fractional Integral and Differential Operators
The method ot atomic decomposition of Besov and Lizorkin-Triebel function spaces is combined with basic ideas from the theory of singular integral operators and applied to the study of fractional integral and diierential operators (FIDO), of which the Riesz potential is considered in detail as a model example. The main new results are: characterization of the Riesz potential by an innnite-dimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006